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9 Abstract In gene-for-gene host–enemy interactions,

10 monogenic plant resistance results from pathogen recog-

11 nition that initiates the induction of plant defense respon-

12 ses. Schematically, as the result of the on/off process of

13 recognition, phenotypic variability in enemy virulence is

14 expected to be qualitative, with either a failure or a success

15 of host colonization. We focussed on a major gene from

16 peach conferring avoidance resistance against the green

17 peach aphid Myzus persicae. Measurements of herbivore

18 density and time-dependent aspects of resistance induction

19 were examined, as well as variability in the aphid’s ability

20 to exploit the resistant host. Varying densities of infestation

21 did not provoke differences in the aphid’s tendency to

22 leave a plant, and a single aphid was sufficient to elicit a

23 response. Similarly, the duration of infestation did not

24 affect the aphid response. A brief aphid feeding time of 3 h

25 triggered induced resistance, which became effective

26 between 24 and 48 h after the initial attack. Induced

27 resistance decayed over time in the absence of additional

28infestation. Thirty aphid genotypes collected from natural

29populations were tested in the laboratory. No clone could

30colonize the resistant host, suggesting that all of them

31triggered the induction of effective plant defense responses.

32However, we detected significant quantitative variation

33among clones in the tendency of aphids to leave plants.

34These results improve our understanding of induced

35resistance as a dynamic phenomenon and suggest that the

36potential for aphids to adapt to a major plant resistance

37gene may depend on factors other than the mere capacity to

38evade recognition.

39

40Keywords Adaptation � Density dependence �

41Gene-for-gene plant-insect interactions �

42Induced resistance � Prunus persica � Timing of induction

43Introduction

44Models of antagonistic coevolution between host plants

45and their enemies have been largely based around two

46major hypotheses. Ehrlich and Raven’s (1964) theory was

47that the evolution of insect specialization on host plants is

48constrained by the diversity of the plant secondary

49metabolites involved in the relationship. In this arms race

50metaphor, plants accumulate constitutive chemicals,

51regarded as biochemical defenses if they have negative

52effects on the herbivores (Wittstock and Gershenzon 2002).

53Herbivores have in turn evolved behavioral or biochemical

54strategies for avoiding plant toxins (Després et al. 2007).

55Host defense chemicals and herbivore ability to metabolize

56plant defensive compounds (virulence) across populations

57may display continuous heritable variation with a high

58degree of correspondence between host and herbivore

59phenotypes (Berenbaum and Zangerl 1998).
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A8 Institut National de la Recherche Agronomique, Génétique et
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60 The gene-for-gene concept proposed by Flor (1955)

61 states that a pathogen is able to infect a host unless the host

62 carries a specific resistance (R) gene that matches a specific

63 pathogen avirulence (Avr) gene. Major R genes act at the

64 earliest stages of pathogen detection by triggering a sig-

65 naling cascade that culminates in activation of strong

66 defenses. Schematically, pathogens adapt to an R gene

67 because altered or deleted Avr genes allows them to evade

68 recognition (Bent and Mackey 2007). Gene-for-gene

69 coevolution, first defined in plant-pathogen associations,

70 was also an inspiration for several interactions between

71 plant and piercing–sucking insects (Kaloshian and Walling

72 2005; Smith and Boyko 2007). The genetics of the inter-

73 action between wheat and the Hessian fly, Mayetiola

74 destructor (Say) (Diptera: Cecidomyiidae), have been

75 generally recognized to fit this model. The interaction is

76 typically manifested as a binary response, i.e., either a

77 resistant plant and dead fly larvae or a susceptible plant and

78 living larvae (Harris et al. 2003). In many interactions

79 between plants and aphids, resistance is controlled by

80 major genes, some of which encode or show tight linkage

81 with plant R proteins conferring resistance to microbial

82 pathogens (Rossi et al. 1998; Klingler et al. 2005; Dogi-

83 mont et al. 2007). Aphid biotypes that can overcome these

84 forms of resistance have appeared commonly among pop-

85 ulations and have been designed on the basis of their

86 qualitative pattern of virulence with respect to these genes

87 (e.g., Alston and Briggs 1977; Porter et al. 1997; Burd et al.

88 2006).

89 The distinction between Ehrlich and Raven’s hypothesis

90 and the gene-for-gene concept has proven to be useful to

91 understand ecological and evolutionary patterns of varia-

92 tion in resistance and virulence at the population level. In

93 particular, the gene-for-gene concept may help explain the

94 nature of the local adaptation of enemy to host that is

95 difficult to reconcile with the arms race view of coevolu-

96 tion (Kniskern and Rausher 2001). Considering the mode

97 of host–enemy coevolution can also have practical ramifi-

98 cations in agricultural systems, insofar as the type of

99 genetic constraints exerted by resistant crop varieties

100 affects the manner in which herbivorous insects evolve and

101 thus impact resistance durability (Gassmann et al. 2009). It

102 was recently demonstrated that the breakdown of mono-

103 genic plant resistance occurred less frequently when the

104 R gene was combined to partial resistance quantitative trait

105 loci (Palloix et al. 2009; Brun et al. 2010).

106 We previously found within the genus Prunus (Rosa-

107 ceae) genetic variation in induced resistance to the green

108 peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphidi-

109 dae), a polyphagous aphid species, which represents a

110 threat for many crops in the world (Sauge et al. 2006). This

111 genetic system establishes a useful framework for ecolog-

112 ical studies of plant–aphid relationships. Moreover, some

113of these peach [Prunus persica (L.) Batsch] genotypes are

114used in breeding programmes. This is the case for the

115cultivar Rubira that confers strong avoidance resistance

116causing aphids to leave the plant within a few days (Sauge

117et al. 2002). The question of resistance durability repre-

118sents a critical issue in cultivated fruit trees, since the

119management of resistance genes in time and space remains

120limited. Thus, we aim to produce information that could

121help determining to which of the two modes of coevolution

122the Rubira–M. persicae interaction approximates.

123Resistance in Rubira is known to be controlled by a

124major dominant gene (Pascal et al. 2002). This gene,

125named Rm2, maps at the bottom end of linkage group 1 of

126an F2 genetic map derived from Rubira and anchored to the

127‘‘Texas’’ 9 ‘‘Earlygold’’ reference map for Prunus (Lam-

128bert and Pascal 2011). During the last decade much has

129been discovered about the biochemical interactions that

130specifically occur during gene-for-gene interactions (Stahl

131and Bishop 2000; Kaloshian and Walling 2005; Bent and

132Mackey 2007; Smith and Boyko 2007). By contrast, only a

133few data are available about Rm2-mediated plant responses

134to M. persicae infestation (Poëssel et al. 2006). In addition,

135there are currently no aphid genotypes known to exhibit

136virulence toward Rm2, probably because no resistant

137commercial variety bearing this gene has been released so

138far. Since intensive screening for virulence has never been

139performed to date, we do not know whether there are

140variants with preadaptive advantages among natural

141populations.

142Thereupon, our specific objectives were twofold. We

143first wanted to determine whether the induced phenotype of

144resistance, as measured by the tendency of aphids to leave

145plants, matches the enemy perception and defense induc-

146tion processes involved in R gene-mediated resistance. For

147that, we investigated aphid density and time-dependent

148aspects of induction. Second, we looked for genetic vari-

149ation in the aphid response to host resistance among natural

150populations of M. persicae and tested the prediction that

151qualitative differences in the expression of virulence occur

152among aphid genotypes.

153Materials and Methods

154Plants and aphids

155Prunus persica cv. Rubira (clone S2605) is a cultivar used

156as peach rootstock. It was selected in 1980 at the Institut

157National de la Recherche Agronomique, France, in a red-

158leaf peach progeny from USA. It is considered to be

159homozygous at most loci, including the Rm2 locus and is

160usually seed-propagated. For all experiments, seedlings

161were grown in a greenhouse and surveyed to keep them

M. Sauge et al.
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162 free of enemies. Plants were tested when 6 weeks (42 day)

163 old.

164 Under temperate climate, M. persicae host alternates

165 between the peach where sexual reproduction occurs

166 (primary host) and many herbaceous host plants (second-

167 ary hosts). In early spring 2002, thirty aphid colonies

168 were collected in three locations of southern France, in

169 peach orchards planted with susceptible varieties (Table 1)

170 (Guillemaud et al. 2003b). Aphids from each sample were

171 assumed to belong to the clonal progeny of a fundatrix,

172 hatched from sexually produced eggs. We believed that

173 each colony represented a distinct genotype, a hypothesis

174 that was verified by genotyping a subset of samples using

175 eight microsatellite loci (result not shown). An avirulent

176 laboratory clone (Mp03) used in previous work (Pascal

177 et al. 2002; Sauge et al. 2002, 2006) was added to the set of

178 field clones and used as a reference. We used one parthe-

179 nogenetic female from each sample to initiate the rearing

180 of 30 new colonies on individual peach seedlings in a

181 growth chamber with a 16-h day length at 19�C.

182Plant resistance in response to varying densities

183and timing of aphid infestation

184To characterize the induced phenotype of resistance in

185relation to (1) the intensity and (2) the timing of aphid

186feeding stimuli, we carried out four experiments where the

187two factors were manipulated independently (see Table 2

188for experimental designs). We asked several questions.

189What is the threshold density of inducing aphids required

190to elicit induced resistance and is the level of induced

191resistance related to the number of inducing aphids

192(experiment a)? What is the minimum duration after the

193beginning of feeding by inducing aphids required to detect

194induced resistance (experiment b)? Is duration of aphid

195feeding the same or can shorter feeding durations trigger

196induced resistance as well (experiment c)? Finally, what is

197the time course of induced resistance in the absence of

198additional aphid feeding (experiment d)?

199We conducted the experiments on plants that had been

200preinfested by M. persicae (clone Mp03) or not (control).

Table 1 Geographical origin and number (n) of Myzus persicae genotypes collected from peach orchards in southern France

Location Date n Longitude Latitude Genotype label

Gotheron 25 February 2002 8 4�570E 44�580N Got 1–8

Carros 27–28 March 2002 16 7�110E 43�470N Car 1–16

Avignon 2 April 2002 6 4�480E 43�560N Avi 1–6

The distance between the sampled orchards is given in Guillemaud et al. (2003a)

Table 2 Experimental design

used to characterize the

expression of plant resistance in

response to varying densities

(experiment a) and timing of

aphid preinfestation

(experiments b, c, and d)

n represents the number of plant

replicates, with 10 aphids per

plant

Each experiment included

control plants that were not

preinfested

Experiment Number of

inducing aphids

Total time from beginning of feeding by inducing

aphids to testing for induced resistance (h) [1] ? [2]

Duration

of feeding [1]

Time between the end

of feeding and testing

for induced resistance [2]

[1] ? [2]

a (n = 10) 1 48 0 48

5 48 0 48

10 48 0 48

20 48 0 48

b (n = 6) 20 6 0 6

20 12 0 12

20 24 0 24

20 48 0 48

c (n = 9–10) 20 3 45 48

20 6 42 48

20 9 39 48

d (n = 10) 20 48 0 0

20 48 24 72

20 48 48 96

Resistance and virulence in the peach–Myzus persicae interaction
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201 Inducing adult aphids were placed on their preferred

202 feeding site (the terminal growing shoot) of each plant of

203 the preinfested group; they were not restricted from dis-

204 persing. At the end of the preinfestation period, we

205 removed all aphids. In experiment a, we fixed the duration

206 of preinfestation at 48 h, a sufficient duration to trigger

207 induced resistance. In experiments b, c, and d, we fixed the

208 number of inducing aphids at 20 to ensure a reasonable

209 aphid density (Sauge et al. 2002). To measure the level of

210 induced resistance, we placed 10 test adult aphids (clone

211 Mp03) on each control and preinfested plant. In the case of

212 preinfested plants, we installed test aphids on the same

213 shoot as the one used for preinfestation. The number of

214 aphids remaining on plants was counted 6 times during the

215 first 48 h after their installation. The few offspring pro-

216 duced were removed at each inspection. We adopted a

217 short counting period because the longer this period, the

218 higher the probability for an induction by test aphids to

219 occur on control plants. We performed 6–10 plant repli-

220 cates for each treatment.

221 Genotypic variation in aphid virulence

222 To determine whether there was variation in the response

223 of M. persicae to plant resistance among natural popula-

224 tions and, if so, whether the level of virulence differed

225 qualitatively or quantitatively, we exposed clones collected

226 from several orchards (planted with susceptible peach

227 varieties) to Rubira plants. We placed 25 synchronized

228 adult aphids on each caged plant. Aphids remaining on

229 plants were counted twice a day at 9.00 and 17.00 h until

230 no more aphids were left. The few offspring produced were

231 not taken into account as a parameter of virulence since

232 they all died on plants before completing the final molt. We

233 evaluated the 30 field clones and the reference clone Mp03.

234 We performed two replicates for each clone.

235 Statistical analysis

236 All statistical analyses were performed using the R soft-

237 ware (R Development Core Team 2010). Since avoidance

238 resistance can be characterized by the time at which the

239 aphid leaves the plant, we used survival analysis, a statis-

240 tical method to study time-to-event variables. It is com-

241 monly utilized in biomedical research and is also applied in

242 ecological entomology to predicting the foraging behavior

243 of parasitoids (e.g., Haccou et al. 1991) or modeling pop-

244 ulation dynamics (Ma and Bechinski 2008). We adopted a

245 Cox’s proportional hazards model (Cox 1972) to quantify

246 the plant-leaving tendency of aphids. The model describes

247 the influence of covariates on the instantaneous probability

248 that the aphid leaves the plant, given that it is still on it,

249 according to the equation:

hðtÞ ¼ hoðtÞexpb
x
;

251251in which h(t) is the plant-leaving tendency (hazard function)

252after a time t spent on the plant, ho(t) is the baseline hazard at

253time t (representing the hazard for an individual with the

254value 0 for all the covariates) and b is the regression coef-

255ficient of the covariate x. If a coefficient b is such that the

256exponential term (the hazard ratio) is greater than one, then

257the corresponding covariate x has an increasing effect on the

258plant-leaving tendency. A coefficient b leading to a hazard

259ratio smaller than one reduces this tendency.

260We estimated the time taken by an individual aphid to

261leave the plant as the mean time between the last inspection

262where it was checked and the first inspection where it was

263missing. We estimated the coefficient b by maximizing a

264partial likelihood, and we tested the significant effect of the

265covariates by examining the null hypothesis H0 b = 0 by a

266likelihood ratio statistics. Covariates in the experiments on

267host resistance were successively the density and duration

268of infestation. The baseline hazard was set to the control.

269Right-censored data were used to take into account aphids

270remaining on plants after the period of observation had

271expired, i.e., 48 h. The covariate in the experiment on

272herbivore virulence was the aphid genotype. The baseline

273hazard at the mean of all covariates in the model was set to

274the genotype Got 1. Plant replicates were specified as strata

275in the model. Strata in a Cox model are regarded as addi-

276tional sources of variation that must be accounted for the

277estimation of the coefficients, but whose effects are not

278considered of particular interest. In a second step, we tested

279for differences in the survival curves of aphids across

280groups of preinfestation or aphid genotypes using the log

281rank test, one of a family of test procedures with parameter

282q defined by Harrington and Fleming (1982).

283Results

284Plant resistance in response to aphid infestation

285The tendency of M. persicae to leave plants of Rubira was

286affected by preinfestation (Table 3). The amount of dam-

287age needed to elicit induced resistance was extremely low.

288A preinfestation by a single aphid significantly increased

289the hazard for subsequent individuals to leave the plant, by

290a factor of exp (b) = 6.31 on average, that is, by 531%

291(Table 3a). Higher numbers of inducing aphids did not lead

292to an increased level of induced resistance within the tested

293range (log rank test: v2 = 0.5, df = 3, P = 0.908), show-

294ing that induced resistance was not aphid density-

295dependent.

296Varying timing of preinfestation differentially affected

297the plant-leaving tendency of aphids. In experiment b

M. Sauge et al.
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298 where the aphid behavior was studied immediately after

299 removing inducing aphids (Table 3b), we found that

300 induced resistance became effective between 24 and 48 h

301 of aphid feeding, since the minimum duration necessary to

302 detect induced resistance was 48 h. At this stage, it was not

303 possible to assess if induction required 24 h or 48 h of

304 feeding, or some combination. Experiment c indicated that

305 very short feeding times (as short as 3 h) were sufficient to

306 elicit induced resistance, provided induction was measured

307 48 h after the beginning of preinfestation (Table 3c). In

308 addition, when the time since the onset of preinfestation

309 was held constant to 48 h, there was no significant effect of

310 the duration of preinfestation on the level of plant avoid-

311 ance (log rank test: v2 = 5.1, df = 2, P = 0.079).

312 Induced resistance persisted for at least 48 h after the

313 end of a 48-h preinfestation (Table 3d). However, esti-

314 mated hazard ratios decayed as the time elapsed between

315 the end of preinfestation and the measure of induced

316 resistance increased. The hazard to leave the plant was

317 increased by 317% when induced resistance was measured

318 immediately after removing the aphids, but only by 241%

319 and 64% when induced resistance was measured, respec-

320 tively, 24 and 48 h after the end of the preinfestation.

321Differences among groups were highly significant (log rank

322test: v2 = 27.8, df = 2, P\ 0.0001).

323Genotypic variation in aphid virulence

324No aphid genotype sampled in the orchard could establish

325colonies on Rubira plants. In addition, when looking at the

326aphid tendency to leave the plant (Table 4), all the clones

327had a higher estimated hazard ratio than Mp03, the labo-

328ratory reference clone which is known to trigger effective

329induced resistance (Sauge et al. 2002). Taken together,

330these results suggest that all clones are avirulent. The fact

331that Mp03 had the lowest hazard ratio possibly reflects the

332effects of conditioning (maternal effects), since this labo-

333ratory clone was reared continuously on peach without host

334plant alternation. Excluding these possible conditioning

335effects would require to rear Mp03 on a secondary host,

336such as pepper or potato, before to test it on Rubira.

337Anyhow, since Mp03 has always been maintained on a

338susceptible peach variety, it is unlikely to have undergone

339any selective adaptation to Rubira.

340Despite the fact that all the field clones were avirulent,

341we detected highly significant variation among them in

Table 3 Effect of aphid density (experiment a) and timing of preinfestation (experiments b, c, and d) on the plant-leaving tendency of Myzus

persicae

Experiment Covariates b SE (b) exp (b) n v2 (df) P Effect on leaving tendency

a Treatment effect 500 135 (4) \0.0001

–1 aphid 1.84 0.210 6.31*** ?

–5 aphids 1.71 0.206 5.53*** ?

–10 aphids 1.78 0.208 5.95*** ?

–20 aphids 1.57 0.206 4.80*** ?

b Treatment effect 300 37.2 (4) \0.0001

–6 h 0.339 0.218 0.71 No effect

–12 h 0.322 0.211 1.38 No effect

–24 h 0.267 0.215 1.31 No effect

–48 h 0.911 0.207 2.45*** ?

c Treatment effect 390 24.3 (3) \0.0001

–3 h ? 45 h 0.432 0.164 1.54** ?

–6 h ? 42 h 0.610 0.164 1.84*** ?

–9 h ? 39 h 0.726 0.162 2.07*** ?

d Treatment effect 400 71.9 (3) \0.0001

–48 h 1.427 0.201 4.17*** ?

–48 h ? 24 h 1.228 0.205 3.41*** ?

–48 h ? 48 h 0.494 0.209 1.64* ?

Estimated regression coefficients (b), standard errors (SE), and hazard ratios [exp (b)] for the covariates of a Cox proportional hazards model. v2

correspond to a likelihood ratio test

*, **, ***, levels of significance as compared to the baseline hazard (uninfested control) for the coefficients at P\ 0.05, 0.01 and 0.001,

respectively

? indicates an increasing effect of the covariate on the plant-leaving tendency. The more remote the hazard ratio to zero, the stronger the plant-

leaving tendency
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342 plant avoidance (log rank test: v2 = 122, df = 29,

343 P\ 0.0001). Under identical conditions, the hazard ratio

344 estimated for clone Car 1 was on average four times higher

345 than for clone Car 16 (Table 4). We did not detect any

346 influence of the geographical origin of the genotypes on the

347 estimated aphid plant-leaving tendency (Kruskal–Wallis

348 rank sum test: v2 = 0.940, df = 2, P = 0.62).

349 Discussion

350 Data from the first part of this study are not sufficient to

351 prove that the interaction between the gene Rm2 from

352 Rubira and M. persicae follows a gene-for-gene model, but

353 the results are a first step toward accepting such a model.

354 The phenotypic expression of resistance as characterized

355 by the aphid plant-leaving tendency matches the enemy

356perception and defense induction processes involved in

357R gene-mediated resistance. A similar behavioral approach

358was adopted for example in the work by Gómez et al.

359(2009), where inducible change in leaf palatability mea-

360sured by means of choice tests with the cabbage army

361moth,Mamestra brassicae (L.), was interpreted as a sign of

362defense activation in white clover, Trifolium repens L. We

363suggest that induced resistance in Rubira is called an all-or-

364nothing trait, given that its level depends neither on the

365amount nor on the duration of the aphid feeding stimuli.

366This qualitative response supports the idea that aphid

367adaptation might occur because of the loss of pathogen

368recognition by the plant.

369Irrespective of the genetic context of our study, the

370absence of aphid density dependence in induction contrasts

371with results from research with arthropods with chewing

372mouthparts, in which the intensity of herbivory was found

Table 4 Effect of the genotype

of Myzus persicae on the plant-

leaving tendency as estimated

by a Cox proportional hazards

model (n = 1,550, v2 = 167,

df = 30, P\ 0.0001)

Estimated regression

coefficients (b), standard errors

(SE), and hazard ratios [exp (b)]

for the covariates of the model.

v2 correspond to a likelihood

ratio test

*, **, *** levels of significance

as compared to the baseline

hazard (clone Got 1) for the

coefficients at P\ 0.05, 0.01

and 0.001, respectively

? indicates an increasing effect;

- indicates a decreasing effect

of the covariate on the plant-

leaving tendency

Covariates b SE (b) exp (b) Effect on leaving

tendency

–Mp03 -0.692 0.205 0.500 *** –

–Car 16 -0.094 0.202 0.909 No effect

–Car 8 -0.086 0.203 0.917 No effect

–Car 14 -0.077 0.200 0.926 No effect

–Car 6 -0.053 0.202 0.948 No effect

–Avi 5 -0.028 0.200 0.972 No effect

–Car 11 -0.003 0.201 0.996 No effect

–Car 3 0.008 0.201 1.009 No effect

–Car 15 0.043 0.204 1.044 No effect

–Car 2 0.047 0.201 1.048 No effect

–Got 7 0.122 0.201 1.131 No effect

–Car 4 0.149 0.200 1.161 No effect

–Avi 3 0.189 0.201 1.208 No effect

–Avi 2 0.197 0.200 1.218 No effect

–Avi 6 0.208 0.201 1.232 No effect

–Got 4 0.228 0.209 1.257 No effect

–Got 5 0.242 0.201 1.275 No effect

–Got 2 0.288 0.200 1.334 No effect

–Car 10 0.288 0.200 1.334 No effect

–Got 8 0.296 0.200 1.345 No effect

–Avi 1 0.307 0.201 1.360 No effect

–Car 5 0.365 0.200 1.442 No effect

–Got 3 0.375 0.201 1.456 No effect

–Got 6 0.388 0.201 1.475 No effect

–Car 9 0.419 0.201 1.521* ?

–Car 12 0.509 0.201 1.664* ?

–Car 7 0.639 0.201 1.895** ?

–Car 13 0.750 0.201 2.119*** ?

–Avi 4 0.942 0.202 2.567*** ?

–Car 1 1.302 0.202 3.679*** ?
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373 to influence the magnitude of induced resistance or defense

374 induction (Agrawal and Karban 2000; Underwood 2000;

375 Massey et al. 2007). This difference may be due to the fact

376 that phloem feeders do not remove leaf tissue per se. For

377 example, Zehnder and Hunter (2007) found that in milk-

378 weed (Asclepias) species infested by the oleander aphid,

379 Aphis nerii (Boyer de Fonscolombe) (Hemiptera: Aphidi-

380 dae), aphid density did not lead to increased induction of

381 plant defensive cardenolides.

382 The speed of responses to enemy attacks may be critical

383 in determining whether the plant or the pest prevails. The

384 time course of M. persicae-induced resistance showed a

385 pattern similar to the dynamics of plant defense responses

386 in other well-characterized plant–aphid systems that

387 involve resistance derived from major genes (e.g., Gao

388 et al. 2007; Li et al. 2008). In these systems, plant

389 responses were activated as soon as 6 h after infestation

390 and extended periods of aphid probing activated more

391 genes, whose number could be finally doubled at 36 or 48 h

392 after infestation. Then, the induction of defense-related

393 genes declined after 24 or 48 h. In Rubira, a very brief

394 aphid feeding duration is required for producing the

395 defense signal. Then, a short time lag between infestation

396 and defense activation ensures rapid and efficient protec-

397 tion against the aphid, compared to other M. persicae-

398 inducible peach genotypes lacking major resistance gene

399 (Sauge et al. 2006). After peak induction at 48 h, induced

400 resistance decayed over time in the absence of additional

401 infestation. Determining the possible costs and benefits

402 associated with the activation of defensive traits and

403 maintenance of the induction status for prolonged periods

404 of time deserves investigations, because they may influence

405 the evolution of resistance.

406 Field data suggest that all M. persicae genotypes tested

407 could be reasonably assigned to a discrete class of aviru-

408 lence, since no progeny could establish on the plant. It is

409 likely that the matching class of virulence, if it exists, has

410 remained undetected in our sampling scheme because of a

411 low or spatially heterogeneous frequency of virulent

412 genotypes in natural populations. Today, predicting the

413 evolution of resistance conferred by Rm2 is difficult. On

414 the one hand, a previous microsatellite analysis exposed a

415 large spatial and temporal genetic variability in French

416 populations of M. persicae (Guillemaud et al. 2003a),

417 theoretically necessary to allow adaptive genes to evolve

418 (but see Lombaert et al. 2009). In addition, M. persicae

419 contains considerable genetic variation for host plant

420 adaptation (Weber 1985; Nikolakakis et al. 2003), and

421 insecticide resistance has evolved in the populations from

422 which aphids used in the present work were sampled

423 (Guillemaud et al. 2003b). On the other hand, the selection

424 pressure exerted by Rm2 remained very low for more than

425 30 years, a situation that should not favor the evolution of

426virulence. In orchards, Rubira is planted as rootstock and

427thus does not interact with aphid populations. In nursery, it

428is cultivated as seedling but under strong insecticidal

429pressure that prevents aphid colonization.

430Finally, the important and intriguing finding of this

431study was the identification of significant quantitative

432variation in the aphid plant-leaving tendency within the

433range of avirulent genotypes tested. The conclusion that

434can be drawn from this result is that virulence in the Ru-

435bira–M. persicae interaction may not be qualitative and

436may also evolve according to the chemical coevolution

437hypothesis. This assertion seems inconsistent with the

438interpretation of the first series of experimentations, but it

439adds weight to the idea that plant–aphid interactions

440involving genes of the R type may exhibit features con-

441sistent with both models of coevolution. There are now at

442least two cases supporting this hypothesis. The gene Mi-1.2

443from tomato, Lycopersicon peruvianum (L.) P. Mill. and

444the gene Vat from melon, Cucumis melo L., are the only

445two genes of resistance to insects (namely aphids) that have

446been cloned so far (Rossi et al. 1998; Dogimont et al.

4472007). Both belong to the so-called NBS-LRR family of

448R resistance genes. Hebert et al. (2007) found that Mi-1.2

449differentially affected the population growth of distinct

450isolates of the potato aphid, Macrosiphum euphorbiae

451(Thomas) (Hemiptera: Aphididae), all of which were

452classified as avirulent. In melon, Vat confers both resis-

453tance to the melon aphid, Aphis gossypii Glover (Hemip-

454tera: Aphididae), and resistance to nonpersistent viruses

455transmission by this same aphid species. Lombaert et al.

456(2009) detected in aphid populations a continuum of per-

457formance response to Vat from complete avirulence to

458strong virulence, but no variability and no overcoming of

459Vat resistance were observed for the trait ‘‘virus trans-

460mission’’. This suggests that A. gossypii is effectively

461recognized by Vat melon plants, even if the trait ‘‘plant

462resistance’’ is overcome.

463Large-scale analysis of M. persicae populations col-

464lected from peach genotypes carrying Rm2 in experi-

465mental orchards is now required to get more information

466about the formal genetics of the interaction. A detailed

467characterization of the biochemical interactions that occur

468in Rubira upon aphid attack is also needed to give evi-

469dence for a gene-for-gene interaction. This characteriza-

470tion could also benefit to breeding for durable resistance.

471Genetic variation in induction of plant metabolites has

472been reported in several systems (Zangerl and Berenbaum

4731990; Agrawal et al. 2002; Stevens and Lindroth 2005). If

474similar variation exists in plant material derived from

475Rubira, breeders could select for peach genotypes har-

476boring the highest concentrations in induced defensive

477compounds, which might improve the efficiency and

478durability of resistance.
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